An Intuitive Explanation of Fourier Theory
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Fourier’s theorem is used fairly extensively to design and simplify
psychophysical experiments. Consequently, It is useful to understand
some of the basic ideas behind it.

The theory is complicated mathematically. But there are some simple
holistic concepts behind Fourier theory which are relatively easy to
explain intuitively.

Basic Principles

Fourier theory states that any visual stimulus in space or time can be
expressed as a sum of a series of spatial and temporal sinusoids. In the spatial
“domain”, these are sinusoidal variations in brightness across the image. For
example, the sinusoidal pattern shown below can be captured in a single
Fourier term that encodes 1: the spatial frequency, 2: the magnitude (positive
or negative), and 3: the phase.
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These three values capture all of the information in the sinusoidal image.
The spatial frequency is the frequency across space (the x-axis in this
case) along which the brightness modulates. The image on the right
shows another sinusoid with a higher spatial frequency.

The magnitude of the sinusoid corresponds to its contrast, or the
difference between the darkest and brightest peaks of the image. The
phase represents how the wave is shifted relative to the origin.
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A Fourier transform encodes not just a single sinusoid, but a whole series of
sinusoids from high spatial frequencies (up to the “Nyquist frequency", i.e. the
highest spatial frequency that can be resolved and encoded by the eye) to low
spatial frequencies (down to zero, i.e. no modulation).

A signal containing only a single spatial frequency of frequency f is plotted as a
single peak at point f along the spatial frequency axis, the height of that peak
corresponding to the amplitude, or contrast of that sinusoidal signal.
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There is also a "DC term" corresponding to zero frequency, which represents
the average brightness across the whole image. A zero DC term is impossible
for visual stimuli because there is no such thing as a negative light. All real
images have a positive DC term, as here.
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The Fourier transform also plots a mirror-image of the spatial frequency plot
reflected across the origin, with spatial frequency increasing in both directions
from the origin. These two plots are always mirror-image reflections of each
other, with identical peaks at f and -f as shown below.
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The Optical Fourier Transform

A simple lens can perform a Fourier transform in real-time. Place an image, for
example a slide transparency, at the focal length of the lens, and illuminate that
slide with coherent light, like a collimated laser beam. At the other focus of the
lens place a frosted glass screen. That's it! The lens will automatically perform a
Fourier transform on the input image, and project it onto the frosted glass screen.
For example if the input image is a sinusoidal grating, as shown below, the
resultant Fourier image will have a bright spot at the center, the DC term, with two
flanking peaks on either side, whose distance from the center will vary with the
spatial frequency of the sinusoid.
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The image below shows a sinusoidal brightness image, and its two-dimensional
Fourier transform, presented here also as a brightness image. Every pixel of the
Fourier image is a spatial frequency value, the magnitude of that value is encoded by
the brightness of the pixel. In this case there is a bright pixel at the very center - this is
the DC term, flanked by two bright pixels either side of the center, that encode the
sinusoidal pattern. The brighter the peaks in the Fourier image, the higher the
contrast in the brightness image
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On the right is another sinusoidal brightness image, this time with a lower
spatial frequency, together with it's two- dimensional Fourier transform
showing three peaks as before, except this time the peaks representing the
sinusoid are closer to the central DC term, indicating a lower spatial
frequency.
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The significant point is that the Fourier image encodes exactly the same information
as the brightness image, except expressed in terms of amplitude as a function of
spatial frequency, rather than brightness as a function of spatial displacement. An
inverse Fourier transform of the Fourier image produces an exact pixel-for-pixel
replica of the original brightness image.

The orientation of the sinusoid correlates with the orientation of the peaks in the
Fourier image relative to the central DC point. In this case a tilted sinusoidal pattern
creates a tilted pair of peaks in the Fourier image.
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The brightness and the Fourier images are completely interchangeable, because
they contain exactly the same information. The combined brightness image
shown above could have been produced by a pixel-for- pixel adding of the two
brightness images, or by a pixel-for-pixel addition of the corresponding Fourier
transforms, followed by an inverse transform to go back to the brightness
domain. Either way the result would be exactly identical
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Higher Harmonics

The basis set for the Fourier transform is the smooth sinusoidal function,
which is optimized for expressing smooth rounded shapes. But the Fourier
transform can actually represent any shape, even harsh rectilinear shapes
with sharp boundaries, which are the most difficult to express in the Fourier
code, because they need so many higher order terms, or higher harmonics.
How these "square wave" functions are expressed as smooth sinusoids will
be demonstrated by example.




Higher Harmonics of a square wave
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Higher Harmonics of a square wave
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Fourier transform of a line

Brightness Image Fourier transform
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Fourier Filtering

The Fourier transform can be used to perform filtering operations to adjust the
spatial frequency content of an image. We begin with an input image shown
below, and perform a Fourier transform on it, then we do an inverse transform
to reconstruct the original image. This reconstructed image is identical, pixel-
for-pixel, with the original brightness image.
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Low-Pass Filter

We begin with a low- pass filter, i.e., a filter that allows the low spatial-frequency
components to pass through, but cuts off the high spatial frequencies. Since the
low frequency components are found near the central DC point, all we have to do
is define a radius around the DC point, and zero every point in the Fourier image
that is beyond that radius. An inverse Fourier transform applied to this low-pass
filtered image produces the inverse transformed image shown next.
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The low-pass filtered image is blurred, preserving the low-frequency, broad
smooth regions of dark and bright, but losing the sharp contours and crisp

edges. Low-pass filtering is equivalent to optical blurring.
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High-Pass Filter

Next, high-pass filtering, where we use the same spatial frequency threshold
to define a radius in the Fourier image. All spatial frequency components that
fall within that radius are eliminated, preserving only the higher spatial
frequency components.

If the low-pass filtered inverse-transformed image is added pixel-for-pixel to
the high-pass inverse- transformed image, this would exactly restore the
original unfiltered image. These images are complementary therefore, each

one encodes the information which is missing from the other.
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Band-Pass Filters

Finally, band-pass filtering that preserves only those spatial frequencies that
fall within a band, greater than a low cut-off, but less than a higher cut-off.
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